01 现在的位置:首页 > 期刊导读 > 2020 > 01 >

基于Shapelet的不相关情感子序列挖掘方法

【作者】吴静怡 吴钟强 商琳

【关键词】 时间序列 微博情感分析 数据挖掘 Shapelet

摘要为了描述和分析特定微博事件的情感变化,情感时间序列被应用在微博事件分析当中.情感时间序列是根据不同时间段内的情感强度生成的曲线,能够描述用户关于事件的情感随时间变化的趋势.为了使对微博的情感挖掘定位到更为精准的时间片,提出一种基于Shapelet的不相关情感子序列挖掘方法.首先通过事件和不同类别用户的微博生成相应的情感时间序列,然后利用基于Shapelet的思想将相应序列划分成不同的子序列,最后通过计算不同种类用户的子序列和事件子序列的相似性得到最不相关的情感子序列.通过基于微博事件数据集的实验展示了使用该方法挖掘出的情感子序列结果,并进一步通过情感相似度方法验证了该方法的合理性.

上一篇:AdaBoost图像到类距离学习的图像分类方法
下一篇:一种用于数据流自适应分类的主动学习方法

版权所有:《南京大学学报(自然科学版)》 苏ICP备10085945号
地址:江苏省南京市鼓楼区汉口路22号,《南京大学学报》编辑部,210093