01 现在的位置:首页 > 期刊导读 > 2020 > 01 >

标记倾向性的粗糙互信息k特征核选择

【作者】程玉胜 陈飞 庞淑芳

【关键词】 多标记学习 相关性矩阵 特征选择 粗糙互信息

摘要针对多标记学习算法中特征描述粒度导致的标记倾向性问题,大多数研究者从特征与所有标记之间的关联性入手,通过求解得出若干重要特征,并由此构造相应的特征子空间.这种做法会导致有些特征与某个标记有很强的相关性,但与整个标记空间的相关性却并不大,这样的特征丢失易造成分类器精度下降.如果将整个标记空间换成部分标记空间甚至单个标记空间来计算与特征之间的关联性,并把关联性很强的标记分开进行特征选择,就会降低算法的时间开销,提高算法的效率.同时,基于互信息的多标记学习算法多数采用传统熵的方法进行特征选择,由于传统熵不具有补的性质,计算方法较为复杂.引入粗糙熵的度量方法,提出基于粗糙互信息的多标记倾向性k特征核选择算法,实验和统计假设检验都证明该算法是有效的.

上一篇:半监督平面聚类算法设计
下一篇:基于邻域交互增益信息的多标记流特征选择算法

版权所有:《南京大学学报(自然科学版)》 苏ICP备10085945号
地址:江苏省南京市鼓楼区汉口路22号,《南京大学学报》编辑部,210093